Since you’re here...

We hope you will consider supporting us today. We need your support to continue to exist, because good entries are more and more work time. Every reader contribution, however big or small, is so valuable. Support "Chess Engines Diary" even a small amount– and it only takes a minute. Thank you.
============================== My email: jotes@go2.pl



Chess engine: Wasp 5.50 NNUE second compiles

Wasp - UCI chess engine, Author: John Stanback
Rating CEDR=3157 (22 place)

Wasp it is a complete rewrite of previous chess engine called Zarkov.

Wasp Release Notes - April 12, 2022

Most Recent Executable files:
Wasp550-windows-avx.exe  : Windows 64-bit, for Intel Haswell or newer CPU
                            (uses popcnt, ctz, clz, 256-bit MM registers, fmadd)
Wasp550-windows.exe      : Windows 64-bit, for Intel Nehalem or newer CPU
                            (uses popcnt, bsf, bsr, 128-bit MM registers)
Wasp550-windows-ancient.exe : Windows 64-bit, for older CPU's
                            (uses software popcnt, ctz, clz)
Wasp550-linux-avx        : Linux 64-bit, for Intel Haswell or newer CPU
Wasp550-linux-sse        : Linux 64-bit, for Intel Nehalem or newer CPU
Wasp550-linux-ancient    : Linux 64-bit, for older CPU's
Wasp550-RPi3             : Raspberry Pi 3
Wasp550-RPiZ             : Raspberry Pi Z

Benchmark data (Ryzen 3950x at 3.9 Ghz):
command: Wasp550-windows-avx.exe -bench
total time= 31.81 seconds, nodes= 39329256, nps= 1236240

UCI Options:
Name              Default Description
Value
  ----------------------------------------------------------------------------
  ConfigFilePath     none     Path to a file containing UCI commands (optional)
  Hash               64       Main Hash table size in Mbytes.
  Threads            1        Number of search threads.
  Clear_Hash         NA       Clear the main Hash table.
  NN_file            embedded Path to neural network weights file
  Use_NN_eval        true     Enable or disable using NN eval.  If false then
                              the hand-crafted eval (hce) is used.
  OwnBook            false    Enable or disable opening book.
  OwnBook_File                Path to OwnBook file (polyglot .bin format).
  OwnBook_Depth      24       Book probe depth in half-moves.
  OwnBook2_File               2nd OwnBook file, probed if no move in 1st book.
  OwnBook2_Depth     0        2nd book probe depth in half-moves.
  OwnBook_Variety    25       Adjusts how Wasp chooses book moves based on the
                              "weight" value for each move. Increasing
                              OwnBook_Variety causes moves with lower weight to
                              be played more frequently while reducing the
                              value gives more priority to higher weighted
                              moves.
  SyzygyPath                  Path to Syzygy tablebases.
  SyzygyProbeDepth6  1        Minimum probe depth for 6-piece TB's. If Syzygy
                              TB's are on a hard drive, this parameter should
                              probably be increased to 4 or 5.
  Log                false    Write UCI output to the file "wasp.log".
  Ponder             true     Enable or disable thinking on opponent's time.
  MultiPV            1        Wasp will do searches to find this number of best
                              moves (and associated principle variations).
  UCI_Chess960       false    Set to true if playing Chess960.
  MoveOverhead       50       This number of milliseconds is subtracted from
                              from the normal target search time to account for
                              I/O overhead or lag.
  UCI_LimitStrength  false    If set to true, Wasp will limit playing strength
                              by reducing the nodes searched per second.
  UCI_Elo            XXXX     The default is the maximum Elo estimated from the
                              nodes/second for a short search done at program
                              startup. If a value below this is given and the
                              UCI_LimitStrength parameter is set to true, Wasp
                              will reduce playing strength by searching at a
                              slower rate.
  Contempt           0        When nearly all the pieces and pawns are on the
                              board, Wasp will add this value to it's own score.
                              As material is traded, this penalty/bonus is pulled
                              toward 0. A negative value encourages Wasp to play
                              for a draw while a positive value encourages it
                              to avoid a draw.
  Selectivity        100      Increase to search more deeply, decrease for
                              a wider search.

Optional Command Line options
  -cfg config_file   # Wasp will read UCI commands from a configuration file
  -log               # Wasp will log UCI I/O to the file "wasp.log"
  -hash hashsize     # Wasp will use hashsize Mbytes for main hashtable
  -threads N         # Wasp will search using N threads


I estimate Wasp 5.50 to be about 50 Elo stronger than Wasp 5.20.
The Neural Network used for position evaluation is now embedded   int the Wasp binary file, so an nn.bin file is no longer required.

  The Neural Network structure is as follows:
    - 1824 Inputs (2x2x7x64 for piece/square combinations
      plus 32 for material difference).
    - Only one hidden layer with 640 nodes, using "leaky ReLU" activation.
    - Three outputs, using sigmoid activation. If either side has any
      non-pawn pieces the evaluation is interpolated from the first
      two outputs.  For king and pawn endgames the third output is used.

  The NN was trained on a dataset of about 130M positions taken from
  games between Wasp and various engines of roughly similar strength
  (including previous versions of Wasp).  The target value used for
  training is based 50% on game result and 50% on Wasp's score from a
  10K node search.  The net was trained using a total of about 150 billion
  samples which took about 56 hours using 24 threads.  I continue to add
  positions to the training dataset and hope that this will give some
  improvement for future versions.

  A few small changes were made to the search.  These include modifications
  to the criteria used for static null move pruning, constants used   for updating the move history counters, and late-move reduction   criteria.


Wasp 5.50 NNUE - download

Our social media:




Comments