Since you’re here...

We hope you will consider supporting us today. We need your support to continue to exist, because good entries are more and more work time. Every reader contribution, however big or small, is so valuable. Support "Chess Engines Diary" even a small amount– and it only takes a minute. Thank you.
============================== My email: jotes@go2.pl



Stockfish 23042209 NNUE for Windows and Linux, interesting compiled by Linmiao Xu (+3,89)



Stockfish 23042209 - UCI chess engine, compiled by Linmiao Xu
Rating CEDR=3712

Timestamp: 1682403540
Update default net to nn-e1fb1ade4432.nnue
Created by retraining nn-dabb1ed23026.nnue with a dataset composed of:

* The previous best dataset (nn-1ceb1a57d117.nnue dataset)
* Adding de-duplicated T80 data from feb2023 and the last 10 days of jan2023, filtered with v6-dd

Initially trained with the same options as the recent master net (nn-1ceb1a57d117.nnue).
Around epoch 890, training was manually stopped and max epoch increased to 1000.

```
python3 easy_train.py \
--experiment-name leela96-dfrc99-T60novdec-v2-T80augsep-v6-T80junjuloctnovjanfebT79aprmayT78jantosepT77dec-v6dd \
--training-dataset /data/leela96-dfrc99-T60novdec-v2-T80augsep-v6-T80junjuloctnovjanfebT79aprmayT78jantosepT77dec-v6dd.binpack \
--nnue-pytorch-branch linrock/nnue-pytorch/misc-fixes \
--start-from-engine-test-net True \
--early-fen-skipping 30 \
--start-lambda 1.0 \
--end-lambda 0.7 \
--max_epoch 900 \
--lr 4.375e-4 \
--gamma 0.995 \
--tui False \
--gpus "0," \
--seed $RANDOM
```

The same v6-dd filtering and binpack minimizer was used for preparing the recent nn-1ceb1a57d117.nnue dataset.

```
python3 interleave_binpacks.py \
leela96-filt-v2.binpack \
dfrc99-filt-v2.binpack \
T60-nov2021-12tb7p-eval-filt-v2.binpack \
T60-dec2021-12tb7p-eval-filt-v2.binpack \
filt-v6/test80-aug2022-16tb7p-filter-v6.min-mar2023.binpack \
filt-v6/test80-sep2022-16tb7p-filter-v6.min-mar2023.binpack \
filt-v6-dd/test80-jun2022-16tb7p-filter-v6-dd.min-mar2023.binpack \
filt-v6-dd/test80-jul2022-16tb7p-filter-v6-dd.binpack \
filt-v6-dd/test80-oct2022-16tb7p-filter-v6-dd.binpack \
filt-v6-dd/test80-nov2022-16tb7p-filter-v6-dd.binpack \
filt-v6-dd/test80-jan2022-3of3-16tb7p-filter-v6-dd.min-mar2023.binpack \
filt-v6-dd/test80-feb2023-16tb7p-filter-v6-dd.min-mar2023.binpack \
filt-v6-dd/test79-apr2022-16tb7p-filter-v6-dd.binpack \
filt-v6-dd/test79-may2022-16tb7p-filter-v6-dd.binpack \
filt-v6-dd/test78-jantomay2022-16tb7p-filter-v6-dd.min-mar2023.binpack \
filt-v6-dd/test78-juntosep2022-16tb7p-filter-v6-dd.binpack \
filt-v6-dd/test77-dec2021-16tb7p-filter-v6-dd.binpack \
/data/leela96-dfrc99-T60novdec-v2-T80augsep-v6-T80junjuloctnovjanfebT79aprmayT78jantosepT77dec-v6dd.binpack
```

Links for downloading the training data components can be found at:
https://robotmoon.com/nnue-training-data/

Local elo at 25k nodes per move:
nn-epoch919.nnue : 2.6 +/- 2.8

Passed STC vs. nn-dabb1ed23026.nnue
https://tests.stockfishchess.org/tests/view/644420df94ff3db5625f2af5
LLR: 2.94 (-2.94,2.94) <0.00,2.00>
Total: 125960 W: 33898 L: 33464 D: 58598 Elo +1.20
Ptnml(0-2): 351, 13920, 34021, 14320, 368

Passed LTC vs. nn-1ceb1a57d117.nnue
https://tests.stockfishchess.org/tests/view/64469f128d30316529b3dc46
LLR: 2.95 (-2.94,2.94) <0.50,2.50>
Total: 24544 W: 6817 L: 6542 D: 11185 Elo +3.89
Ptnml(0-2): 8, 2252, 7488, 2505, 19

closes https://github.com/official-stockfish/Stockfish/pull/4546
bench 3714847

Download:

Our social media:
Twitter
Facebook
Instagram
Pinterest
Reddit
Tumblr



Comments