Since you’re here...

We hope you will consider supporting us today. We need your support to continue to exist, because good entries are more and more work time. Every reader contribution, however big or small, is so valuable. Support "Chess Engines Diary" even a small amount– and it only takes a minute. Thank you.
============================== My email: jotes@go2.pl



Stockfish 2023061113 NNUE for Windows and Linux, interesting compiled by Linmiao Xu (Elo +2.64)



Stockfish 2023061113 - UCI chess engine, compiled by Linmiao Xu
Rating CEDR=3732

Timestamp: 1686489832
Update default net to nn-ea57bea57e32.nnue

Created by retraining an earlier epoch (ep659) of the experiment that led to the first SFNNv6 net:
- First retrained on the nn-0dd1cebea573 dataset
- Then retrained with skip 20 on a smaller dataset containing unfiltered Leela data
- And then retrained again with skip 27 on the nn-0dd1cebea573 dataset

The equivalent 7-step training sequence from scratch that led here was:
1. max-epoch 400, lambda 1.0, constant LR 9.75e-4, T79T77-filter-v6-dd.min.binpack
ep379 chosen for retraining in step2
2. max-epoch 800, end-lambda 0.75, T60T70wIsRightFarseerT60T74T75T76.binpack
ep679 chosen for retraining in step3
3. max-epoch 800, end-lambda 0.75, skip 28, nn-e1fb1ade4432 dataset
ep799 chosen for retraining in step4
4. max-epoch 800, end-lambda 0.7, skip 28, nn-e1fb1ade4432 dataset
ep759 became nn-8d69132723e2.nnue (first SFNNv6 net)
ep659 chosen for retraining in step5
5. max-epoch 800, end-lambda 0.7, skip 28, nn-0dd1cebea573 dataset
ep759 chosen for retraining in step6
6. max-epoch 800, end-lambda 0.7, skip 20, leela-dfrc-v2-T77decT78janfebT79aprT80apr.binpack
ep639 chosen for retraining in step7
7. max-epoch 800, end-lambda 0.7, skip 27, nn-0dd1cebea573 dataset
ep619 became nn-ea57bea57e32.nnue

For the last retraining (step7):
python3 easy_train.py
--experiment-name L1-1536-Re6-masterShuffled-ep639-sk27-Re5-leela-dfrc-v2-T77toT80small-Re4-masterShuffled-ep659-Re3-sameAs-Re2-leela96-dfrc99-16t-v2-T60novdecT80juntonovjanfebT79aprmayT78jantosepT77dec-v6dd-Re1-LeelaFarseer-new-T77T79 \
--training-dataset /data/leela96-dfrc99-T60novdec-v2-T80juntonovjanfebT79aprmayT78jantosepT77dec-v6dd-T80apr.binpack \
--nnue-pytorch-branch linrock/nnue-pytorch/misc-fixes-L1-1536 \
--early-fen-skipping 27 \
--start-lambda 1.0 \
--end-lambda 0.7 \
--max_epoch 800 \
--start-from-engine-test-net False \
--start-from-model /data/L1-1536-Re5-leela-dfrc-v2-T77toT80small-epoch639.nnue \
--lr 4.375e-4 \
--gamma 0.995 \
--tui False \
--seed $RANDOM \
--gpus "0,"

For preparing the step6 leela-dfrc-v2-T77decT78janfebT79aprT80apr.binpack dataset:
python3 interleave_binpacks.py \
leela96-filt-v2.binpack \
dfrc99-16tb7p-eval-filt-v2.binpack \
test77-dec2021-16tb7p.no-db.min-mar2023.binpack \
test78-janfeb2022-16tb7p.no-db.min-mar2023.binpack \
test79-apr2022-16tb7p-filter-v6-dd.binpack \
test80-apr2022-16tb7p.no-db.min-mar2023.binpack \
/data/leela-dfrc-v2-T77decT78janfebT79aprT80apr.binpack

The unfiltered Leela data used for the step6 dataset can be found at:
https://robotmoon.com/nnue-training-data

Local elo at 25k nodes per move:
nn-epoch619.nnue : 2.3 +/- 1.9

Passed STC:
https://tests.stockfishchess.org/tests/view/6480d43c6e6ce8d9fc6d7cc8
LLR: 2.94 (-2.94,2.94) <0.00,2.00>
Total: 40992 W: 11017 L: 10706 D: 19269 Elo +2.64
Ptnml(0-2): 113, 4400, 11170, 4689, 124

Passed LTC:
https://tests.stockfishchess.org/tests/view/648119ac6e6ce8d9fc6d8208
LLR: 2.94 (-2.94,2.94) <0.50,2.50>
Total: 129174 W: 35059 L: 34579 D: 59536 Elo +1.29
Ptnml(0-2): 66, 12548, 38868, 13050, 55

closes https://github.com/official-stockfish/Stockfish/pull/4611
bench: 2370027

Stockfish rating progress:
Engine Rating Score Games (%)
Stockfish 20230227 3732.4 92.00 134 68.66
Stockfish 241022 3724.2 64.00 112 57.14
Stockfish 031022 3720.9 110.50 158 69.94
Stockfish 070922 3718.9 123.00 164 75.00
Stockfish 20230325 3718.5 109.00 169 64.50
Stockfish 20221107 3717.8 106.50 186 57.26
Stockfish 20230308 Ivec 3717.6 79.00 120 65.83
Stockfish 301022 3717.6 112.00 175 64.00
Stockfish 20230218 3715.1 110.50 164 67.38
Stockfish 20230128 3713.1 69.00 106 65.09
Stockfish 290522 Ivec 3711.0 113.00 144 78.47
Stockfish 080622 Ivec 3709.7 94.50 133 71.05
Stockfish 161022 3709.5 147.00 240 61.25
Stockfish 20221123 3709.5 247.50 356 69.52
Stockfish dev-20230520 3708.9 106.50 174 61.21
Stockfish 20221224 3707.4 65.50 104 62.98
Stockfish dev-20230503 Ivec 3706.8 168.50 234 72.01
Stockfish 101022 Ivec 3705.6 82.50 138 59.78
Stockfish 20230308 3705.2 167.00 259 64.48
Stockfish 040722 3705.0 308.50 433 71.25
Stockfish 20230114 3704.6 295.00 410 71.95
Stockfish 20230314 3704.6 119.50 200 59.75
Stockfish 20221221 3703.6 165.00 267 61.80
Stockfish 061122 Ivec 3703.2 130.00 201 64.68
Stockfish 20230314 Ivec 3701.2 94.00 137 68.61
Stockfish dev-20230505 3700.7 97.50 172 56.69
Stockfish 20230104 3700.7 95.50 151 63.25
Stockfish 170922 Ivec 3700.2 107.50 155 69.35
Stockfish 130722 3698.9 102.50 166 61.75
Stockfish 20221120 3698.6 134.50 203 66.26
Stockfish 20230125 3698.5 136.50 201 67.91
Stockfish 110722 Ivec 3698.3 105.50 134 78.73
StockfishMZ 170522 3697.7 345.00 482 71.58
Stockfish 20230101 3697.5 74.00 119 62.18
Stockfish 070622 3697.1 279.00 462 60.39
Stockfish 060822 Ivec 3696.4 96.50 153 63.07
Stockfish 081022 3696.1 89.50 176 50.85
Stockfish dev-20230503 3692.7 78.50 110 71.36
Stockfish 15 3691.1 1038.00 1623 63.96
Stockfish 20221209 3690.4 122.50 192 63.80
Stockfish 030522 3689.6 101.50 150 67.67
Stockfish 20230329 3688.5 75.00 132 56.82
Stockfish 20230202 3687.0 86.00 128 67.19
Stockfish 20221220 3684.4 61.00 107 57.01
Stockfish 20230313 3683.6 82.50 104 79.33
Stockfish 170922 3678.1 150.00 226 66.37
StockfishMZ Iccf 240522 3637.8 100.50 150 67.00

Download:

Our social media:
Twitter
Facebook
Instagram
Pinterest
Reddit
Tumblr



Comments